

Aerial Adulticiding

Public health Entomology Research and Education Center

Jane Barber, Mike Greer FAMU Mark Latham, Gail Stout Manatee County MCD

Characterization of permethrin flux

- Permethrin has just been labeled for aerial application in Florida Mosquito Control
- > Highly toxic to aquatic non targets
- Identify interactions between primary parameters and their effects on control and non target mortality
 - meteorological change, drop size and altitude
- Here we shall only discuss deposition and non target mortality

Mosquito Adulticiding

- In mosquito adulticiding the target is the mosquito on the wing
- > Therefore we must fly when the mosquito flies
- The chemical needs to stay airborne and not deposit for two reasons
 - Chemical will be lost to the mosquitoes
 - Chemical will be available to non targets

Deposition: Non Target Mortality

- The EPA are deeply concerned about ground deposits
- They have gathered aquatic organism end points for permethrin from which No Observable Affect Environmental Concentrations NOAEC are extrapolated
- > We can not exceed these end points

Experimental Protocol

Deposition: Physical and biological measures

Deposition

To date four tests have been conducted

Deposits and non target mortality has occurred on each test

Deposition: Dose response, field dose and mortality

- EPA, Acute toxicity range for permethrin = 0.1 - 210 ppb
- Laboratory dose response shows an LC50 at 1.3 ppb our non target is very sensitive
- The bioassay and filter provides us with a deposit amount that can be extrapolated into the toxicology models

Aquatic Organisms End Points

Exposure Species scenario		Exposure duration	Toxicity reference value (ppb)	Reference	
Freshwater Fish	1				
Acute	Bluegill sunfish	96 hours	LC ₅₀ =0.79 ppb	ESF3 Supplemental	
Chronic	Fathead minnow	Full life cycle	NOAEC = 0.30 ppb LOAEC = 0.41 ppb	ACC 096689 Supplemental Core	
Freshwater Inv	ertebrates				
Acute	Hexagenia hilinouta	48 hours	EC ₃₀ = 0.1 ppb	MRID 23648 Core	

Fresh water invertebrates NOAEC 0.039ppb

Estuarine/Marine Fish						
Acute	Atlantic silverside	96 hours	$LC_{50} = 2.2 \text{ ppb}$	EPA (1987) Supplemental		
Chronic	Sheepshead minnow	28 day early life stage	NOAEC 0.83 ppb ¹ LOAEC 10 ppb	Hansen <i>et al.</i> (1983) Supplemental		

Marine invertebrates NOAEC 0.011ppb

Chronic	Mysid shrimp	30 day life cycle	Mortality: NOAEC = 0.011 ppb LOAEC = 0.024 ppb	MRID 41315701 Supplemental study
---------	--------------	----------------------	--	-------------------------------------

¹ The estuarine/marine chronic value is extrapolated by using an acute/chronic ratio method of available data from similar species (0.79/0.30 : 2.2/x = 0.83 ppb).

Concentration of deposits

- The NOAEC is a concentration the environmental toxicologists use with four different water body depths
 - 6" pool
 - 1' pool
 - 1m pool
 - 2m pool
- > The 2m pool is the standard water body used in the modeling of appropriate nozzle systems

Concentration in a 6" pool

Concentration in a 1' pool

Concentration in a 1m pool

2m = eco-toxicological models

Vortical decay

- The stability at time of application strongly correlated with ground deposit values
- Neutral nights have increased wind speed and therefore vortical decay
 - There is a reduction in the time/distance which the spray is entrained before dissipation
- Stable nights the vortices decay slowly entraining more chemical forcing it into the ground

Tabulated Averages

- ➤ To be within the NOAEC 0.011ppb for marine invertebrates in shallow water you must have a Ri of close to 0.02 or appreciable wind
- ▶ If all water bodies are 1m or more in depth marine invertebrates unharmed
- ➤ All applications were safe for fresh water invertebrates NOAEC 0.039ppb

				2 meters	Ri	U7mm/s	U2mm/s	q (m/s)	Mortality
3-Aug 17-Aug 3-Oct 30-Oct	0.0278	0.0139	0.0042	0.0021	0.19	1.16	0.14	0.39	99
17-Aug	0.0267	0.0133	0.0041	0.0020	0.33	0.7	0.27	0.44	85
3-Oct	0.0085	0.0043	0.0013	0.0006	0.02	2.04	0.38	1.08	2
30-Oct	0.0263	0.0131	0.0040	0.0020	0.37	0.96	0.06	0.34	43

Summary: Preliminary Thoughts

- > Stable nights slow vortical decay rate
 - Deposits: Vortices remain and entrain significant spray volume, meaning more chemical is physically forced down by the air craft, chemical not available to control mosquitoes
- Neutral nights increased vortical decay
 - Deposits: Vortices decay rapidly breaking above the canopy letting air currents take a significant portion of the spray, chemical available to control mosquitoes

Further Work

- > Test an out of ground effect altitude of 150ft
- Then increase the drop size distribution and re-investigate 100 and 150ft
- We are going to add a deposited droplet distribution measure, slides on ground
- Ultimately we will be working with a monosized droplet generator isolating the parameter of drop size
 - Meteorology is the only variable

Any Questions?

Dr. Jane Barber jane.barber@famu.edu